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Matrix formalism for the vwtype models and hidden order 

Keisuke Totsukat and Masuo Suzuki 
Department of Physics. University of Tokyo, 7-3-1 Hongo. Bunkyo-ku, Tokyo 113, Japan 

Received 15 August 1994. in find form 3 November 1994 

Abstract We give a simple method to reduce the vss-type stares, usually expressed by the 
valence bonds. to the matrix-product representation. In this representation. peculiar properlies 
of the vss-type states are quite manif&. Using it. we investigate hidden order in the spin4 
VBS model. The possibility that the Haldane phase for higher spin S is characterized by string 
order p m m e ~ r s  is discussed. A picture of an approximate excitation is also presented. 

1. Introduction 

One-dimensional qoantum-spin systems have a long history and have provided us with many 
examples of exactly soluble many-body systems. Since the well known exact solution of the 
S = 4 Heisenberg chain due to Bethe, much work has been devoted to the study of soluble 
Heisenberg-like chains [14]  and from the knowledge of these solutions it was believed for 
a long time that the Heisenberg chain was massless (or critical) for all spin S. 

However, in 1983. on the basis of the semi-classical argument, Haldane predicted [S, 61 
that the Heisenberg chains are massive for integer4 cases. Although this is quite surprising 
in view of the ordinary spin-wave-like argument, his prediction was verified by numerical 
calculations for lower S [7-91. 

In 1988, Affieck, and co-workers [lo] argued that a special model of bilinear-biquadratic 
chains 

has an exact massive ground state called the valence-bond-solid (VBS) state and indeed it 
possesses expected properties for Haldane systems (see [ 111 for a review). At least for the 
S = 1 case, the qualitative validity of the VBS picture has been verified by several authors 
[ 12-14]. 

In the following, we mainly treat the spin3 VBS model, whose Hamiltonian essentially 
consists of the projection operators of su(2) (see section 2 for the~definition of the model). 
The ground state of the Hamiltonian is given by the so-called (spin-S) YBS state [15] (its 
definition of is given in the next section. s e i  (3)). Remarkably, in this ground state we 
can calculate several correlation functions exactly [lo, 15, 161 and verify that the ordinary 
correlation functions decay exponentially. Hence we expect these models have massive 
excitations in agreement with the Haldane conjecture. 
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On the other hand, it was argued by den Nijs and Rommelse [17] and later by Tasaki 
[IS] that the ground states of these models have a special type of long-range order (LRO) 
called the string order. It can be measured by the string order parameter 

whose relevance is numerically supported [19, 201. Furthermore, Kennedy and Tasaki 
successfully related the Haldane phase of S = 1 chains to the breakdown of the discrete 
Z, x ZQ symmetry [ZO, 211. 

After their paper, Oshikawa tried to extend their picture to higher-S cases to obtain the 
fact that this symmetry is unbroken for even4 ( S  > 2) cases [22]. This implies that the 
Kennedy-Tasaki picture for the S = 1 case is not sufficient to describe the hidden symmetry 
in higher-S systems. What kind of hidden order exists in higher4 chains is still unclear. In 
the present paper, we attempt to attack this problem. For two reasons, we use the VBS model 
instead of the original Heisenberg (i.e. consisting of pure bilinear interaction) model. One 
reason is that the analytic calculation is possible for the VBS models while the numerical 
simulation becomes harder for higher values of S. The second is that the nine-fold (near) 
degeneracy recently observed in the numerical calculation [23] implies that the S = 2 VBS 
model can be used as the first approximation to the original Heisenberg model. 

This paper is organized as follows. We give the definition of the model and its exact VBS 
ground state in section 2. Our main results are also summarized there. The reader who is not 
interested in the technical details will skip sections 3, 4, and S. In section 3 we generalize 
the matrix-product representation [24, 251 to higher3 VBS states and clarify its connection 
to the Schwinger boson representation of the VBS states [15, 161. In this representation, the 
peculiar structure of the VBS states is manifest. Calculation of the generalized string order 
is performed in section 4 using the matrix formalism. Section S is devoted to the discussion 
of the low-lying excitation of the VBS models. We show that an approximate elementary 
excitation has a topological property and that it is responsible for the rapid decrease of the 
long-range string order at finite temperatures recently found in the Monte Carlo calculation 
[26]. A remarkable equivalence between two pictures of the low-lying excitation is also 
proved. The matrices necessary for our calculation are summarized in appendix A. In 
appendix B, the difference in the stmcture of the low-lying excitations between integer 
S and half-odd-integer S is briefly discussed in the context of the Lieb-Schultz-Mattis 
theorem. 

2. The model and the main resdfs 

The VBS model which we discuss in the following sections is defined as a collection of a 
kind of su(2) projection operators (strictly speaking, they are not projection operators for 
s 2 2): 

where Si is a spin operator with spin S and 

denotes such an (Sf 1)-th order polynomial of the exchange interaction S&+, as projects 
out the subspaces with J = S + 1, . . . , 2s (J(J + 1) = (St + The normalization 
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factor N has been introduced so that the linear coefficient in (2 )  may be unity. We list 
X v ~ s  for first few values of S: ~ ~ 

(i) 

K S = l  = c {Si .Sj , ,  + - 3 (si.si+l)* f - ”1 3 
1 

(ii) 

(iii) 

3961 179 
59 19 1 
358 1611 (Si.Si+IY + =,(si .Si+1)4 + - . 

Since the local Hamiltonian Pi:l (S&+j) expresses a kind of projection operator, the exact 
ground state is easily found to be a product of the valence-bond operators 1151 

In the above expression, ut and b! denote the ordinary Schwinger bosons at site i and the 
polynomials Qleft and &ght represent the left and right edge states, respectively. We are 

and b i )  of degree S. Thus, the ground state for an open chain is ( S  + 1)  x ( S  + 1)-fold 
degenerate. We construct an altemative expression of this state, using (S + 1) x ( S  4- I) 
matrices (see (15) and (16)) 

(4) 
where ,C, denotes the number of ways we pick up n identical objects out of m and i s  also 
expressed as ( z ) .  

To investigate hidden strucures in the VBS model, we calculate two types of non-local 
string order parameter 

free to choose them, provided that they are homogeneous polynomials in U!  and 6 ,  i t  (a, 

g j ( P ,  4) = (-l)s-”+’J(s - P + 4 ) U  + P -4)!IS; 4 - P ) j  

The operator P(Sz )  is defined to satisfy the condition P(&:S) = fS and P = 0 otherwise. 
A physical motivation to consider such a modified order parameter is that we can realize 
simple ferromagnetic correlations between fS just as in the S = 1 case. We have to 
stress here that we consider these order parameters not to reveal the mechanism of the 
gap generation but to detect peculiar structures in the VBS models. The above two order 
parameters are shown to be given by the following simple formulae: 
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respectively, as derived in section 4. The order parameter 0:,,(0) has two large peaks 
amund (not exactly at) 0 = fz/S, whose height increases as SZ(Z/z)* with S (for large 
S). This is consistent with the numerical result that O;h,,g(z/2) is a good order parameter 
for the S = 2 Heisenberg chain [27,23]. The S2 behaviour may remind us of the classical 
N6el ordered state. However, the facts that CJ&,&/S) behaves like unity for large S and 
that all Sz values occur with equal probability in the VBS state (see section 4) imply that 
this Sz behaviour does not come from the classical Niel-like property but that it appears as 
a consequence of non-trivial optimization of the correlation. It is important to note that the 
precise position of the peaks can vary with the change of the state (namely, the modification 
of the matrix elements of g). Nevertheless, a simple symmetry argument (section 4) tells 
us that the peak at 0 = z has a kind of topological stability. We also point out that the 0 
dependence of O,&,g(S) in the spin-2S VBS state is the same as in the spin4 dimer state 
(see (34) and (36)). This may suggest the long-range dimer nature of the VBS state. 

We can show for our special VBS case that the slow twist used by Affleck and Lieb does 
not create an 'excited' state orthogonal to the ground state (see appendix B). This may give 
some hints to consider the low-lying excitation of the integer4 chains. Instead of such a 
spin-wave-lie excitation, we propose the crackion excitation first proposed by b a b e  [28] 
for the S = 1 case as an elementary excitation in the spin4 VBS model. Concerning this 
excitation, we show the following. 

(i) It takes on the form of a 'travelling matrix wave'. This 'plane-wave' state is known 
to reproduce the numerically observed spectrum of the VBS model for S = 1 [29, 301. 

(ii) It has a kind of topological property. Contrary to the S = 1 case discussed by FAth 
and S6lyom, the topological property of the crackion is not manifest in the Si configuration 
itself. Nevertheless, if we observe the string-like operator 7, its kink nature is visible. 
This is consistent with the recent observation that the Haldane gap is equal to the energy 
of the domain-wall formation [31, 321. ~ 

~ 

(iii) The decay of the (long-range) string order at finite temperatures [26] is brought 
about by the crackion condensation. 

(iv) It has an elementary nature and hence the single-mode-approximation (SMA) (for 
the details of SMA, see [8, 341) picture and the crackion picture are equivalent. The SMA 
estimate of the Haldane gap of the VBS model seems to be consistent with the well known 
formula (with a modified coupling constant). 

K Totsuka and M Suzuki 

3. Matrix formalism 

In this section, we develop a method of representing the valence-bond-type states in terms 
of matrix products and describe how to compute various quantities using them. 

The key ingredient is quite simple. First recall that the VBS states for open chains have 
left- and right-edge degrees of freedom. For the case of the spin3 VBS state 

(a! and bi denote the Schwinger bosons) we have (S + 1) x (S + 1) edge states represented 
by two polynomials Qjd, and Qrighr of degree S, correspondingly. For later convenience, 
we choose 

t S--p+l t p-I Q d a t ,  b f ;  p )  = =(al) 

&,i,r(a~. bl: 4) = ~ ( a ~ ) " - ' ( b ~ ) s - " l  

(b,) (P = 1, . . . , S + 1) for the left edge 

(q = 1, . . . , S + 1) for the right edge 
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as the edge states Ql.fi and Qd,ht, respectively. 

stares. For example, we write the S = 1 VBS state on a finite (length-L) open chain as 
Let us express the spin4 VBS state as an ( S  f.1) x ( S  + 1) matrix whose entries are 

> . ~  (10) IVBS; L; t. $) IVBS; L; t, f) ( IVBS; L; $, .H IVBS; L ;  4, t) 
Then, we can make a new length-(l+ 1) VBS State (Written in terms of an (s + 1) X (s+ 1) 
matrix) by multiplying a matrix of the same size from the right [341 

IVBS; L f  1 )  = IVES; L )  @ ~ L + I .  

The ( S  + 1) x (S + 1) matrix g is determined so that the valence-bond operator 
(aZbL,, - biaL+,)s is created when we contract the matrix indices. For the S = 1 VBS 
state, we have obtained 

Replacing t or $ in the above equation by the corresponding edge (both left and right) 
states, it can be easily generalized to the higher-S cases. The requirement described above 
determines g matrices: 

g, cp. q)  = (-i)$-p+l ,j-(ajys-p+%;)s+p-4 10))~ 

= ( - l ) s " + ' , / m x  J ( S - p + q ) ! ( S + p - q ) ! l S ; q - p ) j  ~ (13) 

g " ' " " ( p . q ) = , j ~ x J ( S - p + q q ) ! ( S + P - q ) ! l S ; q  -P)1. (14) 

Using gi and g", the VBS state for a finite open chain is given by a simple product'of 
(S+~I)  x (S+ 1) matrices: 

IVES: P. 4) = [gSm €3 gz 8 . .  . @ g ~ - I  @ g ~ ] ( ~ , ~ ~ .  (15) 

For the case of a periodic chain, (15) is replaced by 

1VBS)pec = Tr [gi C3 gz C3 . . . C3 g ~ - I  C3 g ~ ] .  (16) 
This kind of representation was first discussed by Fannes et al [35. 241 in an abstract 
manner, and later by Kliimper et al [36, 251 for the S = 1 deformed VBS model. Our 
method of construction is quite simple and clarifies the connection between the valence- 
bond representation and the matrix-product one. 

Below we shall list a few examples of g-matrices. 

(i) For the S = 2 VBS state: 

) 
21O)i 2&ll)i 2&12)i 

gi = - 2 4 3  - l), -4jo)i ~ -2&Il)i . 
2 4  - 2); 2&1 - I); 210); 

1. -610), -12Il)c -6fi12)i -&13); 

-6fil - 2)i -121/?1 - 1); -1810)i -1211); 

( 
(ii) For the S = 3 VBS state: 

121 - 1); 181O)i 12&[150i 6fi[2ri ( &I - 3); 6Jlijl - 2); 121 - I ) ;  610); 

gi = 

The greatest merit of this expression is that g consists only of states of a single site. 
Therefore we have only to treat local states gi(p, q)  instead of non-local valence-bond 
operators. 
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Furthermore, the matrix formalism clarifies the special structure of the VBS states. The 
(S + 1 )  x (S + 1)-fold degeneracy and the edge degrees of freedom are quite naturally 
incorporated in it. To see the step structure of the VBS states [17] in our approach, we first 
note that the product of an arbitrary number of the g-matrices can be written like 

The sum of Sj’ over an arbha? interval of the spin-S VBS state is restricted between -S and 
S (and hence IVBS) can be expressed by a finite-dimensional matrix!) and this is nothing but 
the ‘disordered flat’ structure of the VBS states first pointed out by den Nijs and Rommelse 
[17]. The diluted antiferromagnetic order in the S = 1 VBS state is peculiar to the spin-1 
case, where this rule allows only configurations l i e  (. . . , -1.0,O. 1.0, -1. 1.0,. . .). If 
we depict an Sz configuration by steps whose height differences represent SL values at each 
site, for the sp in3  case we have step diagrams going upward and downward within height 
S (see figure 1). Namely, the sum of Sz values sitting to the left of a given arbitrary site 
(i.e. height of a step) does not exceed a certain restricted value. We can regard this property 
as a kind of ‘quasi-charge neutrality’. Moreover, as is clear in the matrix representation, 
the Si value of the newly added site is determined only by this SfoI (step height). This is 
reminiscent of the Markov process. The relation between such a Markov-like property and 
the short-ranged correlations was first stressed by Fannes et a1 [35,24]. We stress here that 
the size of the g matrices is determined not by the spin S but by the number of valence bonds 
between two adjacent sites. Therefore it is possible to construct the matrix-product ground 
states of spin4 chains using smaller (than (S + 1) x (S + 1)) matrices (such possibilities 
are briefly discussed in the appendix of [34]). 

Next, we generalize the method proposed by Kliimper et al [25] of calculating 
expectation values with respect to the VBS-type states to higher4 cases. 

As we have seen, the VBS-type states are simply expressed using the g matrices 
IVBS) = g”‘ 8 gz 8.. . 8 gL. 

In the above expression, it is important that g is written in terms of local states (usually 
those of a single site). We are interested in expectation values of the following type: 

(Ai) = (VBSldilVBS). (18) 
Writing the matrix indices explicitly, we can express (ai) as 
( ~ i ) , . p  = g~~~t(cu,mi)CZIg~(ml,mz) 8...CZIgL(mL-lI,5’) t 

lm,.nil 

xAig,,,(a.n1)8gz(nl,nz)CZI ...@gL(n~-1,,5’) (19) 
with equations (13) and (14), where a and ,5’ denote the left and right edge states respectively 
and gt is a matrix which is obtained by replacing the ‘ket’ vectors in g by ‘bra’ vectors 
without transposing it. Using the local property of g, it can be rewritten as follows: 

(A,)+4 = g,,,(or,ml)g,,,(ff.nl) x & m l , m z ) g z ( n ~ . n ~ )  x ... t 

Imi.njl 

(20) 
Then we introduce the G matrices whose entries are c numbers (see appendix A for concrete 
forms of G and CA) 

t t x g ,  h - 1 ,  mi)Ai gi(ni-1, ni) x . . . x gL(mL-l .  B)gL(nL-r, B). 

G(mj-q.nj.t:m,.n;) 5 gj(mJ-1, t .  mj)gj(nj-I,nj)  (21) 
G$c.,,,,;-x:m,.az) = gi(m,-i,mi)digi(ni-i,ni). t .  (22) 
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&I.* 

Ie"d.1 

le"Cl.0 

s: =In 

Reson of world lines 
1 -I 0 l / o  0 -1 1 - 1  0 

0 0 -I " - 1  I 0 -1 0 

...... 
" ]- . '  wlth t-Ledge 

I - -  .- 
I. .  

....................... 

s,'=-1n 

(a) 

1 - 1 0  2 -I 1 . 2  I O  1 . 2  0 1 . 1  ............................ .................... .......................... 

I.. 

I Sil0.1 Si&L 

Figure 1. The step diagrams of a typical S' configuration ofthe VBS state. (a) S = 1 VBS state. 
(b) S = 2 VBS stale. The diluted AF order is obscured in the S = 2 case. 

For our spin4 case, G is given by 

G ( ~ ; y . s )  = (-1YiBJsC,-isCp-i scpiscs-i 

xJ(S + y - a)!(S - y + .Y)!(S + 6 - B)!(S - 6 + B ) !  6,-fl.r-s. (23) 
If we adopt the lexicographical ordering for the double (tensorial) indices of G to regard it 
as an ordinary matrix, then the RHS of (20) becomes 

(24) (di)a,fl = (Md)(u.u:p,p) = [GS"t(G)i-2Gd(G)L-i]l~,ol:B,p) . 
For example, (Ai) can be obtained as the following elements: 

(Ai),$ = (Md1.1 ~ (Ai)?? = (Mdh.4 (Ai)$$  = (Md).Z,l (Ai)$, = (Md)4,4 

for the S = 1 case. 
For the case of a periodic boundary condition, (24) is replaced by 

(.Ai) =E gl (or ,ml)  ~ . . .  ~ g Z ( m L - l , a ) A i g l ( B , n l )  ~ . . .  ~ggL(ngL-1,B) 
ad Imj,"jl 

= Tr(G)L-'Gd. (2.5) 
Equations (24) and (25) are the fundamental formulae for our calculation. If we regard G 
as the transfer matrix of a onedimensional (not (ltl)-dim!) classical statistical system, 
equations (24) and (25) are nothing but the.expressions of the expectation values. In [15], 
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Arovas et a1 argued that using the coherent-state method an expectation value (A) can be 
written as that of a classical spin system. Our expressions ((24) and (25)) are the transfer- 
matrix version of it. 

matrix for sp in3  VBS 
state!). However, there is a nice property which simplifies the calculation-the ‘asymptotic 
orthogonality’. As can be easily verified, the VBS states with different edge state are nor 
orthogonal and actually have exponentially small overlaps. For example, we have [IO] 

K Totsuka and M Suzuki 

In general, G becomes huge as S increases ((S + 1)2 x (S + 

Therefore, the VBS states are only asymptotically orthogonal. This implies that in 
considering the thermodynamic limit we have only to keep the elements G(i, i; j ,  j ) ,  which 
correspond to pairs with the same edge states. Namely, we are left with much smaller 
((S + 1) x (S + 1) matrix!) matrices than the original ones. Fortunately, we can obtain all 
the (S+ 1)’ eigenvalues of G for the spin4 VBS state from the results of the coherent-state 
method [16]. They are 

( I = O , l ,  ..., S). / (2S+ l)! SC! A(!) = (-1) 
S + 1 S+I+lCl 

The degeneracy of A(1) is U + 1, and hence the maximum eigenvalue A(0) = 
(2s + I)!/@ + 1) is unique. Combining this with the fact that h(0) belongs to the reduced 
( S  + I )  x (S + 1) matrix, we can prove the above-mentioned ‘asymptotic orthogonality’ in 
the matrix formalism. 

As is clear from the above argument, it is convenient to define the reduced matrices 

They are much smaller than the original ones and hence easier to handle. Some Gusd 
matrices relevant for our purpose are listed in appendix A. There is an interesting 
inteqetat+n of the G&d matrix. If we properly renormalizejud (we call the renormalized 
one G ) ,  G can be viewed as a stochastic matrix (i.e. cj Gi,j = I). In this picture, the 
edge states correspond to states of the Markov process and G“ gives transition probabilities 
between left and right edge states. This fact is useful in evaluating the asymptotic form of 
G;,,(L -+ 00). 

4. The generalized string order 

In the last section, we developed a method of computing various quantities using the matrix- 
products. In this section, we apply it to the calculation of string correlation functions and 
others and we attempt to uncover the physics of the VBS models. 

The first attempt at calculating the string order parameters for the higher4 VBS models 
was done by Oshikawa [22]. He obtained the result that the ordinary string order parameter 
is zero for even S, while it is non-zero for odd S. This implies that the hidden Z, x &- 
symmetry-breaking picture is not successful in explaining the Haldane phase for higher4 
cases. For the S = 1 case, we can relate the breakdown of this discrete symmetry to the 
appearance of the Haldane phase. Roughly speaking, this is because the Kennedy-Tasaki 
transformation succeeds in converting the VBS state into the ‘diluted‘ ferromagnetic state. 
A brief calculation tells us that it does not work for S > 2, since the topological AF order 
is obscured there. 
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To detect the hidden order in higher-S cases, some generalized string order parameters 
have been proposed. Among them, the most popular one is [22, 271 

Utkng(i, j ;  e) = S: n e x p  (ies;) ~j . (27) ( j-' k=i ) 
In the singlet ground state (owing to the Marshall-Lieb-Mattis theorem, the Heisenberg 
model on a finite chain with an even number of sites satisfies this condition), it has the 
following property: 

(28) 
Especially, it follows that U&ng(i, j; 6') is real and symmetric with respect to 0 = x 

(and so is the string order parameter O:"ng(i, j ;  e)). Hatsugai [27] 
numerically investigated O:ing(B = 8) for the S = 2 Heisenberg chain and concluded that 
it would be a good order parameter. 

From this viewpoint, it is interesting to &lculate the generalized string order parameter 
0:,,,(0) for the spin4 VBS state. We expect that the result may give us important 
information about the hidden order of the true spin-S Heisenberg model. 

Before calculating O&g(0), we investigate the probability distribution of S' values. 
To do this, we calculate the following average: 

Uic"ng(i, j; e )  = Ufkng(i, j ;  0 + b) = Uibng(i, j; -0). 

1 
-(vBs~P(S' = m)lVBS) N 

where P ( S z  = m) means a projection operator onto an Sz = m state. It c" be readily 
evaluated using the matrix formalism, since P(m) is easily realized in terms of the G matrix 
(where necessary matrices are summarized in appendix A). Therefore we get 

(29) 

This implies that each SL value occurs with equal probability in the S VBS state. This 
is the reason for the vanishing me-point function (for the deformed VBS states [25, 371: 
Prob(S' = ~ m )  values are unequal, though they still preserve the symmetry Prob(SL = m) = 
Prob(SL = -m). 

It is instructive to calculate the same quantity for the transformed VBs state defined by 
IVYs) = Ulvss), where U is the Kennedy-Tasaki unitary transformation compactly written 
down as [22] 

1 
Prob(S; = m) = - 

2 S f 1 '  

This gives a hint to understand why the hidden & x &-symmetry breaking doesnot occur 
for even4 models. Since the probability distribution for the transformed state Prob(Sj) is 
given by - 1 

N 
we have to compute the expectation value of U-' PsU. Noting that 

Prob(Sj = m )  = -(VBSlu-lP$(Sj = m) UlVBS) 

x(-I)p fornE2.Z-f- l  
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and 

K Torsukn and M Suzuki 

for n E 2 2  

we finally obtain the following results: 

(i) For the S=l case: 

(i.e. U I V B S )  = IVY$ is ferromagnetic). 
(ii) For S E 22: 

(= FYob(Sj' = m)) 
- 1 

Prob(Sz = m )  = - 
2 S +  I 

(it depends on neither the value of Sz nor the edge states). 

They suggest that the Kennedy-Tasaki unitary transformation has no effect on the 
probability distribution of Sj' for even S, that is, it transforms the (a-symmetric) VBS state 
to a &-symmetric state. Hence the string order parameter vanishes. For odd4  (S > 3) 
cases, it converts the VBS state into aZ2-asymmetric state according to the left edge state, 
though UlVBS) is no longer ferromagnetic. This is why the siring order parameter takes a 
non-zero value when S = odd. 

The generalized string order parameter 

is easily calculated using the asymptotic orthogonality of the VBS state described in section 
2. Note that the following relation: 

holds for 4 = n::: exp(i0S;)S;. By definition (5), the stxing order parameter is given by 
the square of (4). Then, all we have to compute here is (v). Using matrices summarized 
in appendix A, we obtain 

(32) 
The following identities (which can be proved by elementary combinatorics) 

S+I S ( S + 2 - p )  
(S + 1)(S + 2) 

c ( q - l ) S c p - l  s C , - , ( S + p - q ) ! ( S - p + q ) !  =(2S+I)! 
y=1 
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enable us to simplify the right-hand side further. Thus, we finally arrive at the following 
expression: 

(33) 

where the symbol a (= 1,. . . , S + I )  labels the left edge states. Note that the value of 
limj,,w(y) depends on the left edge states through the phase factor e-ia8. The string order 
parameter is given by the square of its modulus as follows: 

After an elementary calculation, we obtain the aforementioned result (7). It always vanishes 
at 0 = 0 corresponding to the fact that the ordinary correlators are exponentially decaying. 
Another node 0 = IT appears for even S. This reflects the above mentioned fact that the 
Kennedy-Tasaki transformation does not change the probability distribution of Sz values for 
even S. Because of the symmetry property of U&,@) (equation (28)), the node at 0 = n 
always exists if the number of nodes is even. Namely, the nodes 0 = 0, IT are topologically 
stable while the location of~the others may be variable. For several values of S, we give the 
profiles of Of~ni,,(0) (figure 2). We can clearly see that they have a large peak near n / S  (for 
S = 1 and 2, the largest peak is exactly at n / S ) .  The reason for this can be understood as 
follows. If we focus only on SL = S and -S ('particles') and regard others as a background, 
an interval between two adjacent particles has a 'background charge' -S (when they are 
both S) or zero (when they are S and 4). Therefore, insertion of the string operator 

exp(i(rc/S)S;) always keeps the correlation between 'panicles' ferromagnetic. This 
is the picture of the string order in S = 1 chains. For higher vaIues of S, we should take 
into account correlations between other values of Si, which are not so simple as S and -S 
and are smaller in their modulus. Thus we have the largest peak around n/S. Since the 
left edge state appears in (v) as the phase factor e-irrs (a = 1, . . . , S + I), we  cannot 
distinguish the (S+ 1) x (S+ 1)-fold degenerate ground states by the value of (Y(8 = n)). 
On the other hand, the choice B = n/S assigns different factors . . , -e-k/s to (v) 
for the (S + 1) edge states. 

On the  basis of the above results, we may take Ormng(z/S) as a good order 
parameter to detect the hidden order in higher4 chains, though we do not know a unitary 
msformation that transforms S: nii; exp(i(n/S)S;)Sj to the ordinary ferromagnetic 
correlation. However, it should be stressed here that if we modify the weights of the 
g matrix the location of the largest peak can be changed. The detailed analysis of the 
correlations between several values of Sz tells us that the situation becomes quite simple 
if we consider only S and -S. The correlation between them is always maximized by 
choosing 0 to satisfy the relation cos SO = -1, namely 8 = n / S .  

In relation to the analogy between the dimerized state and the Haldane state [381, there 
is a very suggestive fact about {US~&3)). We consider the spin4 completely dimerized 
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(a) S=l  String Order (d) S=4 String Order 

topological angle(B/rr) 

(b) S=2 String Order (e) S=5 String Order 

(c) S-3 String Order (f)  S=B String Order 

topological angle(Q/n) topological angle(e/x) 
Figure 2. The profiles of a generalized string order parameter for several values of S .  (a) S = 1. 
(b) S = 2. (4 S = 3. ( d l S  = 4. (e) S = 5. (0 S = 6. Here O&(B) and O;,(B) are plotted 
by solid lines and dashed ones. respectively. From these figures, we can clearly see thar two 
large peaks exist around B = &TIS. 

state: 
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A direct calculation leads to the following result: 

Note that it has the same 8 dependence  as^ O&(8) has for the spin-2S(!) VBS state 
(equation (34))t. Since, as mentioned above, the modification of the weights changes the 
8-dependence, this result is non-trivial and may suggest the (long-range) dimer nature of the 
VBS state. In the language of the Markov process. the G matrix for the v B S  state represents 
an ergodic chain and that of the dimer state corresponds to a sequence of independent events 
(a trivial Markov chain!). After a long interval, the former reduces to the latter. Thus, as 
long as we consider physics of a scale larger than the correlation length, the vBS state and 
the dimer state are essentially the same. 

We can consider another order parameter which is parallel to the S = 1 string order 
parameter. From the preceding argument, it is obvious that we can obtain a ‘femomagnetic’ 
correlation, if we concentrate only on Sz = S or -S. In this viewpoint, it is natural to 
define a ‘modified‘ string order parameter 

where P ( 9 )  = Sz if Si = fS and P(Sz)  = 0 otherwise. The order parameter U;,,(@) 
can be written as a limiting case of the two-point function of the string-like 
operator 

j-1 

vi,, = n e x p ( i e ~ f ) ~ ( ~ i ) .  
k= I 

The same technique as before yields 

and consequently 

Thus, has S peaks at 0 = (2m - I)a/k (m =‘-I, ..., S) and, as is expected 
from the construction, it coincides with 0&(8) for S = 1. The value 0&,(8 = 
n/S) = (2S/(2S + 1))’ has a simple interpretation. Since the case Sz = +S occurs 
with probability 1/(2S+ 1) (see equation (29)), U&,,(8 = a/S) is computed also as 
(C~=-~I I / (ZS  + l)ll~(m)1)’ = (ZS/(ZS + 1))2. We can easily evaluate ukod(e = a / ~ )  
for the spin4 dimer state to obtain zero. Thus we can distinguish the VBS phase from the 

t The only difference is that equation (34) is valid only for the long-distance limit. while equarian (36) holds for 
any distances. 
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dimer phase. It is remarkable since U&(e = x / S )  does not vanish even in the spin4 
dimer state owing to small shifts of the peaks. 

In the large3 limit, U&,(x/S) behaves like unity. This is to be compared with the fact 
that U & ( r / S )  behaves like (Z/x)*SZ. If the large4 VBS state has a NBel-like property, 
U ~ , , ( x / S )  is also O(S2). Thus we can see that the S2 behaviour of U&(x/S) is not 
a consequence of the classical nature$. Note that even for higher values of S, U&,,,(x/S) 
takes a non-zero value through the same mechanism as in the S = 1 case. The 0 dependence 
sinTS8/2) in the above equation universally appears, whenever we take into account the 
contribution only from S and -S. This is the reason why sin2(O/2) is unchanged even if 
we modify the weights of g in the S = 1 case, where S and -S are the only non-zero S'. 

As was pointed out by 1391, it is possible to construct VBS-type states which can be 
represented by the product of smaller matrices. For example, we can represent the S = 2 
intermediate4 VBS state in terms of the product of the following 2 x 2 matrices [34]: 
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where the states 12) and 1-2) are excluded. Note that gi can be obtained also by modifying 
the g matrix for the S = 1 VBS state. For this intermediate-D phase, the generalized string 
order parameter (31) is computed as 

Its 0 dependence is the same as that of the S = 1 string order parameter U;lting(e) = 
4/9sin2(8/2).' It is important to note that the generalized string order parameter for the 
s = 2 VBS State 

given by equation (34) has a node at e = x and hence has a e dependence completely 
different from that of equation (41). This implies that the generalized string order parameter 
(31) can distinguish the Haldane phase from the intermediate-D phase. Recent numerical 
calculations by Nishiyama er al [23] show that U&og(e = x )  = 0 at the S = 2 Heisenberg 
point. while O:,,,(e = x /2 )  # 0 there. Hence the ground state of the S = 2 Heisenberg 
model does not belong to the intermediate-D phase. Thus the ground state is expected to 
be characterized by the set of the two string order parameters O&(JC) and O:titring(~/S) 
for even S. 

5. Low-lying excitations 

Recently, Fith and S6lyom [29] postulated that the elementary excitation of the S = 1 VBS 
model is a triplet 'defect' in the valence-bond solid called a 'crackion'. It has spin 1 and 
creates a domain wall in the string order. 

In this section, we will show that this picture can be generalized to the higher4 VBS 
models and that it might give some keys to understanding the nature of low-lying excitations 
in the integer-S chains [SI. 

$ The 'classical' limit S --). a, is subtle for the VBS models. For example, a naive S --t a, limit in the ordinary 
S' conelation function yields ( - l ) i i - i iS f /3  (N&l-like!). From this. one may conclude that the S f CO limit of 
the VBS model is the classicd N&l state. However. sinee the rehtion (SfST) = (S:Sr) = (S;Sf) holds even in 
chis limit. it is not classical. 
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First we briefly recapitulate the conjectured structure of the spectrum. According to 
Haldane [5, 61, the elementary excitation of the integer-S chain is a massive triplet while 
the generic half-odd-integer S chains have a massless doublet excitation. That is, the 
elementary excitation of the latter case is that of the S = Heisenberg model-a spin-; 
soliton first pointed out by Faddeev and Takhtajan [40, 411. For the. half-odd-integer case, 
a rigorous argument [42] and the exact (Bethe ansatz) solution 121 suggest the naturalness 
of such an excitation. Since we can explicitly verify that such a picture breaks down for 
the vBS model (see appendix B), we need an alternative simple model of the elementary 
excitation for the integer4 case. 

The crackion is defined by replacing a singlet valence-bond operator by a triplet operator 
[281 

+ Bbj)(aa!+l +Pi+,) (42) 

where a,p are auxiliary variables that label SL values (or2,a,5’,f12 label SL = 1,0, -1, 
respectively).~ Apparently, the system has spin 1 in the presence of a crackion (for simplicity 
we consider the case of a periodic boundary condition). Knabe treated it variationally, and 
obtained a finite gap (of course, within the approximation). In a recent paper, Fith and 
S6lyom (291 considered a ‘moving’ crackion and showed that its spectrum is in relatively 
good agreement with the numerical results. They also postulated that a crackion plays a 
kink-like role in the ferromagnetic state generated by the Kennedy-Tasaki transformation. 

Before we generalize this to the higher& cases. we must recall that the Kennedy-Tasaki 
transformation fails to convert the VBS state to a ferromagnetic state (even for the odd4  
case!) as shown in the previous section. Therefore, the kink nature of a crackion is obscure 
in the Sz configuration itself. However, it can be observed if we consider the expectation 
value of the string-like operator V,!. 

We begin with the g-matrix representation of the crackion configurations. The boson 
representation of the crackion is 

IY“) = (. . .)(a:-,bf - b ~ i _ l a ~ ) s  T“(aj,  t bjaj+l,  t i  

where T‘(a,, t i t  bi , ai+l,  bl+l) means triplet operators 
(aj+,bj t t - t t s-1 (. ..)IO)) (43) J 

I t i  To = (a!b!+, + bjaj+]) t t  T-’ = btb! 

g j ( p ,  4)  = ( - l ) S - ” I d Z d ( S  - p + q + 1)!(S + p - q - I)! 

J J+1’ 
T = a . a .  J J+1 

According to the prescription described in section 2. the g matrices for these configuration 
are easily found as 

2(q - I) - s 
14 - P ) j  S 

X (45) 

g,:l(p,q) =~ (-1) ~ - p + ’ ~ ~ J ( S - p + q - l ) ! ( S + p - q + l ) !  
.~ 

(46) 
q - 1  x-lq - p - 1 ) j .  s 

.For example, the S = 1 crackions are expressed by the following matrices: 
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Using them, we can represent the crackion 1";) as 
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IY;) = gS'" @ g2 0 - . . @ gj-I @ g,B 0 gj+10 . . . @ gL. (47) 

For the S = 1 case, as is easily verified, each +1 or -1 crackion creates a domain wall 
somewhere around the site j (its precise location is obscured owing to the liquid-like nature 
of the VBS state) (see figure 3(a)). Since for the higher4 cases the meaning of the string 
order becomes ambiguous, we have to use the term 'domain wall' in a generalized sense. 

0 0 1-1 0 10lOa-1 0 1 0  0 -1 
domain wall 

1 - 1 0 2 - 1  1 - 2 g o 1 - 2 1 0 - 1  

1 - 1 0 2 - 1  1 - 2 B O l - 2 1 0 - 1  
Defect in Uie DOF-sLmclure 

(b) 
Figure 3. The effect of the +I  crnckion. It crates a 'domain wall' in the perfect saing ordw 
but its precise location is implicit. (a) The S = 1 \ g s  case. (b) The S = 2 YBS case. 

Using the above matrices, we can evaluate the expectation value of VL in the presence 
of crackions. For the case of a single crackion, what we have to compute is 

(Y;; % BIYZIY;; % B )  

for i < j .  

With the help of the asymptotic orthogonality, we can evaluate it for the long-distance limit 
to obtain 

Note that (Vf) is multiplied by an extra phase factor e-iae if a crackion is located to the 
left of Vf .  It is easy to generalize this result to multicrackion cases. The desired formula is 

(49) -#Em 

where C a k  counts a 'crackion charge' between site 1 and site i. If we choose B = IT, this 
is a & charge and adding a +1 or -1 crackion flips the sign of (Vz) for odd S. Of course, 

(Vf)mu~ticrac~on = (Yz)vBse 
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if we observe the string operator in the x direction, (vi"), a 0 crackion also flips the sign. 
Thus the three crackions form a triplet of a topological excitation. 

It is straightforward to generalize this result to the higher3 cases using the higher-S 
version of the crackion matrices (44)<46). The result is the same as in the S = 1 case 
and is given by equation (49). Therefore, we obtain the expectation value of the string 
correlator in the presence of the crackions as follows: 

When B = K, this quantity alternates its sign according to the parity of ak (& charge). 
Taking into account the multicrackion configurations, 'we can approximately estimate 

the temperature dependence of the string correlator. Following Fith and S6lyom [29], we 
adopt the 'moving' crackion 

as an elementary excitation (where the relation between a moving crackion and an 
elementary excitation in the SMA picture is discussed below). Since I";} is obtained by 
replacing~gj in the matrix product of the VBS state by the crackion matrix g,", we can regard 
IY'(k)) as the matrix version of a spin-wave state. For the moment, we restrict ourselves to 
the S = 1 case. The first step is to approximate the crackions by the gas of hard-core bosons 
[44-46] (or free fermions, equivalently: [46] discusses a fermionic picture of elementary 
excitations; see also [47] and references cited therein). For low enough temperatures, it 
is sufficient to consider low-energy excitations around a momentum k = z. That is, we 
approximate the crackions by free fermions with the following dispersion relation . (namely 
an approximate expression of equation (61)): 

(52) 

Furthermore, we assume that the density of crackions is not very high and hence we can 
neglect the intercrackion interaction (which decays exponentially with a correlation length - I /  In 3). This is reminiscent of the well known diluteinstanton-gas approximation. This 
assumption may be justified at sufficiently low temperatures. Now we divide the calculation 
into two parts, that is. the computation of the expectation value of Usoing in the N-crackion 
configurations and  the^ summation over all configurations. Neglecting the sum over the 
plane-wave factors, we can calculate ((ki][Us~ng~(ki)) as (1 - 2p,k)N+1+N-l (No denotes 
number of the crackions of species a). With the help of the familiar technique in elementary 
statistical mechanics, we finally arrive at the following desired resultt (note that among the 
three crackions only two contribute to the reduction of the string order): 

20 8 ( k )  = AH + a(k - K)' (AH = z, 01 = $). 

In the above expression, the quantity p - ~  is related to the probability of finding a single 
crackion in the interval between the two end-points (i and j )  of Usdng, and is of the order 
li - j I / L  Its precise form can be evaluated from the expression of (klOsdnglk). For the 
pmcr - 1 case, it decreases rapidly as the temperature increases above AH. On the other 
hand, it is almost constant for a small enough value of pc&. Namely, the long-range 

t In this expression. we have kept only the lowest-order terms. A more complete expression including higher-order 
terms is written using the Appell function. 



1656 

string order decays at finite temperatures, while the short-range one is robust. This is in 
agreement with the recent Monte Carlo result [261. Note that the domain-wall property of 
the elementary excitations of the S = 1 Heisenberg chain recently argued by several authors 
[31. 321 is naturally explained by the crackion picture. 

To conclude this section, we point out the elementary nature of the crackions. F6th 
and S6lyom [291 showed that the action of magnon operators can be written in terms of 
crackions. A little calculation shows that for the spin-S case, we have 

(54) 

(55) 

s,TlVBS) - S(l'L',?,) - I.;')). (56) 
From these relations, it follows that crackions have an elementary nature for all integer- 

S VBS models. Furthermore, it can be shown that the energy of a moving crackion is equal 
to o s ~ ~ ( k )  (the specnum obtained by the singlemode approximation). The proof is quite 
simple. Within the singlemode approximation (SMA), an approximate dispersion relation is 
given by 
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$lVBS) = ( l Y ~ l )  - IYF)) 
S,TlVBS) = - (S/2) ([Y:-l) - I*:)) 

Using the elementary property of the crackions, the numerator can be rewritten as 

(numerator) = -2(VBSlSz(k)'HSL (-k)lVBS) 
1 
2 

= (S/2)' 2(1   COS^) (Yo(k)lHIYo(k)). (58) 
In rewriting the second line to the third one, we have changed the dummy indices. 

In a similar manner, we can rewrite the denominator (the static structure factor) 
(V5S~~z(k)~z(-k)~VBS) = (S/2)22(1 - cosk) (Yo(k)lYo(k)). (59) 

By the rotational symmetry, the aboveresults hold also for +1 and -1 crackions. Combining 
equations (58) and (59), we anive at the following equality: 

This equality was fust pointed out by Fith and S6lyom for the S = 1 case [29]. 

Gordan coefficients. we obtain 
It is straightforward to evaluate the RHS of (60). After some algebra using the Clebsch- 

for s = 2 

. for s = 4  
715(13+ 12cosk) 

cm&) = ~ S M A @ )  = 90318 
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etc. The expression o s ~ ~  for the S = 1 VBS model was first obtained by Arovas eta1 [15]. 
Since the recent numerical calculation [46,30] shows that the SMA is a good approximation 
at least near k = z, we may expect that the above results also reproduce the true values 
fairly weU. Within our approximation, the dispersion relations for S = 2, 3, and 4 are 
qualitatively the same as for the S = 1 case. 

~ 
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100 

10-1 

10-4 

0 2 4 6 

spin 
Figure 4. A logarithmic plot of the Haldane gap for seveml values of S. The gap is obtained 
by the single-mode approximarion (SMA). It exhibits m evident linearity, which implies that the 
a-modd prediction holds also in ow VBS case. 

The approximate value of the Haldane gap AH for the VBS model is listed in table 1 
for S = 1.. . . , 6. According to the general theory of the SMA, the true gap is smaller than 
this value. A logarithmic plot of the gaps (see figure 4) shows that the large3 behaviour 
of the gaps is well reproduced by the famous formula 

A = constant x e-uS. 

In our case, wseems to be 1.7-1.8 (precisely, using data for S = 4,5,6,7, we obtain the 
value a = 1.78 since there may be an S-dependent prefactor, this value must be regarded 
as a crude estimate), which is different from the well known o-model prediction [5, 111 
(Y = z. A remark is in order here. Using the method of AfAeck 1491, we can map the 
spin4 VBS model to the O(3) non-linear U model with an S-dependent prefactor. The 
trouble is that this prefactor can take a negative value for some S. From this reason, we 
can not completely rely on this mapping in our cas& However, if we take into account the 
renormalization effect of the coupling constant (the bare one is 219, this discrepancy may 
be resolved. Thus, we believe that the VBS model also belongs to a class of models which 
are effectively described by the O(3) non-linear U model (without the IIz topological term). 
Recent numerical results [50] suggest that the only differences between the true Heisenberg 
model and the VBS model are a prefactor of the exponential and the renormalid coupling 
constant. 
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We expect that this crackion picture gives an important clue to understanding the 
elementary excitations in integer-S chains. 

Table 1. The gap estimated using the SMA for several values of S. The Haldane gap decreases 
exponentially as the value of S increasa. 

Spin Gap (MA) (Approximation) 

1 : :  - 7.41 x IO-' 

2 4  2.00 x lo-' 

3 %  4.21 x 

7.92 x IO-' 71s 
4 "  

5 & 1 . 3 9 ~  

6 2.35 x 

6. Discussion 

In the preceding sections, we gave a simple method of expressing the valencebond- (VB-) 
type states in terms of a simple matrix product. In our formalism, the edge states which 
naturally arise in the VB-type states correspond to the matrix indices, and the size of the 
g matrix is determined by the number of VBS on a given link. From this viewpoint, the 
matrix-product representation is a natural expression for the VB-type states. It is important 
that the size of the g matrices is always smaller than 2s + 1 reflecting the VB nature of the 
states. 

A generalization of our method to other VB-type states is straightforward. For example, 
the partially dimerized state (where the number of VBS alternates in links) is expressed by 
two non-square matrices gA and gB as 

g(' @ 82" sg,A 8 84" 8.. . 
(see appendix A of [34] for other examples). 

It is also possible to generalize it in another direction. Starting from the matrix-product 
representation of a given state, we can construct its anisotropic version (preserving the U(1) 
symmetry) by modifying the weights of the matrix elements. However, the Hamiltonian 
whose exact ground state is given by this is not so simple [25, 37, 341. Recently, Zittartz 
conshvcted such Hamiltonians for several values of S [39]. Our method may give a starting 
point in such an approach. We can also use such modified matrices as trial functions for 
the realistic models. For example, an S = 1 modified g matrix 

) -cos @IO), - s in0l l ) j  
gj(Q) = ( sin01 - l)j cosO1O)j 

serves as a trial state for the ground state of the S = 1 XXZ chain with the D term [31]. It 
interpolates between the large-D phase (0 = 0 or x )  and the N k l  phase (0 = 7r/2). The 
variational parameter 0 changes the concentration of zeros. 
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In the preceding sections, we have investigated hidden structures in the VBS model. Our 
calculation was motivated by a recently observed [23] ninefold (near) degeneracy in the 
ground state of the S = 2 Heisenberg model, which implies that the S = 2 VBS model may 
also be a good approximation to the true Heisenberg model. As was shown by Kennedy 
and Tasaki; we can relate the fourfold (near) degeneracy found in the S = 1 Haldane 
systems to the breakdown of the hidden Z, x & symmetry (or non-vanishing string order 
parameters Q&(n) and However, this picture is not successful in higher& 
cas&. Furthermore, there is a model which exhibits the Haldane gap without breaking 
the full & x 2.2 symmetry. Therefore, we modestly consider the string order parameter 
as a probe that distinguishes the Haldane phase(s) from other more trivial massive phases. 
At present, we do not know whether there exists a unitary transformation that relates order 
parameters and a hidden symmetry for higher-S cases. Since our results imply aresemblance 
between the spin-S dimer state and the spin-2S VBS state, the dimer picture seems to be 
successful for general spin4 cases. 
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Appendix A. Relevant G matrices 

In this appendix, we summarize some G matrices necessary for OUT calculation. 

(i) G matrix: 

xJ(S + a - c )  !(S - a + c)!(S + b - d )  ! ( S  - b + d) !  6o-b.C-d (AI) 

(unreduced form) 

(where G and G R ~ ~  are symmetric). 

We list a few G matrices: 
(a) S = 1 VBS state 

/ I  0 0 2 \  
r. 

G R c d = (  ) I 0 - 1  0 0  
0 0 - 1 0  

\ 2  0 0 I )  
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(b) S = 2 vBS state 

G =  

' 4  0 0 0 1 2 0 0 0 2 4  
0 - 8 0  0 0 - 1 2 0  0 0 
0 0 4 0 0 0 0 0 0  
0 0 0 - 8  0 0 0 - 1 2 0  
12 0 0 0 16 0. 0 0 12 
0 -12 0 0 0 -8. 0 0 0 
0 0 0 0 0 0 4 0 0  
0 0 0 - 1 2 0  0 0 - 8  0 
2 4 0 0 0 1 2 0 0 0 4  

4 12 24 

24 12 4 
G R ~ =  ( 12 16 1 2 )  

(iv) GLg="" ( P ( S z  = m) denotes a projection operator): 

P(S'=f?l) 
(GR,d )(p,q) = g'(P7 4)  p(Sz = m) 8 ( P ,  4 )  

=6,+m,,sC,-IsC*-I(S+P-q)!(S-p+4)!. 
(4 

In fact, GRed and G:' are related by the fol~owing unitary transformation: 

U ( 0 )  = diag(e", e", . . , , $(s+l)') 
and hence have the eigenvalues in common. 

It is not so easy to compute exactly (GRedy or (G~:Y for general S. However, their 
asymptotic (n >> 1) form is calculable~because of the asymptotic orthogonality. The result 
is 

An easy way of obtaining this result is to use the well known result in the theory of the 
Markov process. Since [(S + 1)/(2S+ 1)!]G~d denotes a double stochastic matrix with 
an ergodic property, all the matrix elements are the same in its asymptotic form. Thus we 
obtain (A6). 

Using this result, it is possible to show that we can reduce the infinite-volume expectation 
values to those of afnite volume (spin-S version of lemma 2.6 of [lo]). 

Of course, since h(O)/h(l) i 1 in the S + bo limit, the above argument is invalid 
and we have to consider all the eigenvalues. Accordingly, the above-obtained expressions 
of the string order parameters are valid only for finite S. 
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Appendix B. Relation to the Lieb-Schultz-Mattis theorem 

In 1511, Lieb, Schultz and Mattis (LSM) proved the famous LieMchultz-Mattis theorem. 
More than twenty years later, Affleck and Lieb generalized the idea of LSM to prove the 
existence of a gapless excitation in generic XXZ-type spin chains with half-odd-integral S 

The main idea of Affleck and Lieb is as follows. ,First we assume that the finite-chain 
ground state of 3lxxz (i) is unique and (ii) satisfies S& = 0. Then a moderate twist realized 
by a unitary transformation 

~421. 

creates a state UIGS). which has an energy higher than that of IGS) by an order of O(l/Z). 
For half-odd-integer S, we can show that (CSlUlGS) = 0 and the possibility of a unique 
infinite-volume ground state with a gap is excluded. Furthermore, we can show that UIGS) 
has a momentum n and this is consistent with the fact that the low-lying excitation of the 
Bethe ansutz~solvable~models [l, 41 [4] is gapless and k linear around k = n. 

However, for integer S, we can not tell whether ICs) and UlGS) are different or not by 
their method. 

In this appendix, we show that the transformed state UlvBs) approaches the original 
state IvBs) in the infinite-volume limit. This suggests the difference between the low-lying 
excitations of integer3 chains and those of half-odd-integer4 chains. 

First we compute Ulves) and rewrite it in terms of the matrix product. After some 
algebra, we obtain 

1-1 

UIVBS)PBC = (. . .) n (&i+l - e‘z”‘b$z~+l)s(. . .)lo)) 
k=-I 

where the ellipsis denotes the usual valence-bond operators. The same calculation ai in 
section 2 yields g matrices 

p m  = (ei&/L)s-P+’ J- scp-I s c , - l J ~ s - P + q ) ! ( s + P - q ) ! l q - P ) l .  (B1) 
The argument about the reduced matrices in section 2 and appendix A is unchanged in 
the presence of the extra phase factors and equation (A6) applies  also^ to ihis case. The 
evaluation of the overlap (v~slUlvas) is straightforward. All we need is the following G 
matrix: 

(B2) G‘(P, q,  ; r, s) = gib, r)&, $1. 
Using this, the desired quantity is computed as 

(VBSIUIVBS) = Tr(G’f. 

Although the precise form of this is complicated, the asymptotic form is simple, 

(B4) 
This implies that the ground state Ives) and the twisted state U ~ V B S )  are not orthogonal even 
for finite 1. Therefore, in our special case we can conclude that the unitary transformation 
employed by Affleck and Lieb, when applied to the integer3 chains, does not create a~ 
different state which is orthogonal to the ground state. On the other hand, it is obvious that 
the excited states created by crackions are orthogonal to the ground state since they contain 
different quantum numbers S&. 

(VBS~U~VBS) = -1 + 0 (l/Z). 
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Although the above fact does not exclude the possibility of a gapless excitation in the 
VBS models, our result suggests that such an excitation, if it exists, is not created by a 
'spin-wave-like' twist. 
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